# inorganic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Xian-Ming Zhang,<sup>a</sup> Zheng-Ming Hao<sup>a</sup> and Seik Weng Ng<sup>b</sup>\*

<sup>a</sup>School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, Shanxi Province, People's Republic of China, and <sup>b</sup>Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

#### **Key indicators**

Single-crystal X-ray study T = 295 KMean  $\sigma(\text{S}-\text{O}) = 0.003 \text{ Å}$  R factor = 0.030 wR factor = 0.071 Data-to-parameter ratio = 11.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

# Langbeinite-type (NH<sub>4</sub>)<sub>2</sub>Mn<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>

The anionic component of the crystal structure of cubic langbeinite-type diammonium dimanganese(II) trisulfate(IV),  $(NH_4)_2Mn_2(SO_4)_3$ , is a three-dimensional  $[Mn_2(SO_4)_3]^{2-}$  network based on SO<sub>4</sub> tetrahedra corner-linked to Mn<sup>II</sup>O<sub>6</sub> octahedra. The charge-balancing ammonium cations occupy the cavities in the network. The pairs of independent Mn and N atoms lie on special positions of site symmetry 3.

### Comment

The development of microporous materials has led to investigations of the factors governing the amine-templated syntheses of metal sulfates (Behera et al., 2004). The present report on a new ammonium manganese sulfate, which was obtained unexpectedly in a hydrothermal synthesis intended for this purpose, is a contribution to the limited number of structural studies of inorganic manganese sulfate compounds, such as, for example, Mn(HSO<sub>4</sub>)<sub>2</sub>, Mn(HSO<sub>4</sub>)<sub>2</sub>·H<sub>2</sub>O and Mn(HSO<sub>4</sub>)<sub>2</sub>(H<sub>2</sub>SO<sub>4</sub>) (Stiewe et al.,1998), MnSO<sub>4</sub>·H<sub>2</sub>O (Le Fur et al., 1966), (H<sub>5</sub>O<sub>2</sub>)[Mn<sup>III</sup>(H<sub>2</sub>O)<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub>] (Chang et al., 1983), MnSO<sub>4</sub>·5H<sub>2</sub>O (Caminiti et al., 1982), MnSO<sub>4</sub>·H<sub>2</sub>O (Wildner & Giester, 1991), and MnSO<sub>4</sub>·4H<sub>2</sub>O (Held & Bohatý, 2002). The sulfatomanganate(II) dianion can exist as a distinct entity, as noted in histidinium tetraaquadisulfatomanganate (Wojtczak & Jaskólski, 1989) and ethylenediammonium tetraaquadisulfatomanganate (Chaabouni et al., 1996); both salts have monodentate sulfate groups only.

The title compound is a double salt and crystallizes in the langbeinite  $[K_2Mg_2(SO_4)_3]$  structure type (Gossner & Koch, 1931; Zemann & Zemann, 1957). Its cubic cell dimensions (10.192 Å) were first reported by Gattow & Zemann (1957). (NH<sub>4</sub>)<sub>2</sub>Mn<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> is isotypic with its selenate analog (NH<sub>4</sub>)<sub>2</sub>Mn<sub>2</sub>(SeO<sub>4</sub>)<sub>3</sub>. The latter is obtained by dehydrating the hexahydrate, and forms a solid-solution series with the sulfate (Kohler & Franke, 1964). The chromate analog, (NH<sub>4</sub>)<sub>2</sub>Mn<sub>2</sub>(CrO<sub>4</sub>)<sub>3</sub> (Cord *et al.*, 1971), is also isotypic with the title compound.

The anionic component of  $(NH_4)_2Mn_2(SO_4)_3$  is a threedimensional network of SO<sub>4</sub> tetrahedra and  $Mn^{II}O_6$  octahedra. Each tetrahedron shares its corners with four octahedra; the Mn–O bond lengths in the two Mn<sup>II</sup>O<sub>6</sub> octahedra are very similar (Table 1 and Fig. 1). The ammonium cations occupy the voids of the network and are weakly hydrogenbonded to it (Table 2).

## Experimental

A mixture of manganese(II) sulfate hydrate (0.05 g, 0.3 mmol), oxalic acid dihydrate (0.02 g, 0.2 mmol), *o*-phenylenediamine (0.02 g, 0.2 mmol) and acetonitrile (5 ml) was sealed into a 15 ml Teflon-lined

Received 21 March 2005 Accepted 15 April 2005 Online 23 April 2005

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved stainless steel bomb, which was then heated at 433 K for 72 h. The bomb was cooled slowly to room temperature to give pale yellow (almost colorless) block-shaped crystals of  $(NH_4)_2Mn_2(SO_4)_3$ , in about 65% yield.

#### Crystal data

 $(NH_4)_2Mn_2(SO_4)_3$   $M_r = 434.14$ Cubic,  $P2_13$  a = 10.188 (2) Å V = 1057.5 (4) Å<sup>3</sup> Z = 4  $D_x = 2.727$  Mg m<sup>-3</sup> Mo Ka radiation

#### Data collection

Bruker APEX area-detector818 in<br/>diffractometer $\phi$  and  $\omega$  scans $R_{int} =$ Absorption correction: multi-scan $\theta_{max} =$ (SADABS; Bruker, 2002)h = - $T_{min} = 0.584, T_{max} = 0.862$ k = -7327 measured reflectionsl = -1

#### Refinement

| Refinement on $F^2$             |
|---------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.030$ |
| $wR(F^2) = 0.071$               |
| S = 1.05                        |
| 818 reflections                 |
| 70 parameters                   |
| Only coordinates of H atoms     |
| refined                         |

Cell parameters from 1534 reflections  $\theta = 3.5-21.5^{\circ}$  $\mu = 3.05 \text{ mm}^{-1}$ T = 295 (2) K Block, pale yellow  $0.14 \times 0.08 \times 0.05 \text{ mm}$ 

| 818 independent reflections           |
|---------------------------------------|
| 765 reflections with $I > 2\sigma(I)$ |
| $R_{\rm int} = 0.069$                 |
| $\theta_{\rm max} = 27.4^{\circ}$     |
| $h = -13 \rightarrow 13$              |
| $k = -12 \rightarrow 13$              |
| $l = -12 \rightarrow 8$               |

 $w = 1/[\sigma^2(F_o^2) + (0.043P)^2]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} = 0.001$  $\Delta\rho_{max} = 0.36 \text{ e } \text{Å}^{-3}$  $\Delta\rho_{min} = -0.35 \text{ e } \text{Å}^{-3}$ Extinction correction: none Absolute structure: Flack (1983), 342 Friedel pairs Flack parameter: 0.01 (4)

 Table 1

 Selected geometric parameters (Å, °).

| Mn1-O1                                  | 2.164 (3) | S-01                                      | 1.473 (3) |
|-----------------------------------------|-----------|-------------------------------------------|-----------|
| Mn1-O3 <sup>iii</sup>                   | 2.169 (3) | S-O2                                      | 1.475 (3) |
| Mn2-O2                                  | 2.157 (3) | S-O3                                      | 1.462 (3) |
| Mn2-O4 <sup>vii</sup>                   | 2.175 (3) | S-O4                                      | 1.467 (3) |
| O1-Mn1-O1 <sup>i</sup>                  | 95.0 (1)  | O2-Mn2-O4 <sup>viii</sup>                 | 81.6 (1)  |
| O1-Mn1-O3 <sup>iii</sup>                | 88.8 (1)  | O2-Mn2-O4 <sup>ix</sup>                   | 173.6 (1) |
| O1-Mn1-O3 <sup>iv</sup>                 | 174.2 (1) | O4 <sup>vii</sup> -Mn2-O4 <sup>viii</sup> | 93.2 (1)  |
| O1-Mn1-O1 <sup>x</sup>                  | 95.0 (1)  | O1-S-O2                                   | 110.4 (2) |
| O1-Mn1-O3 <sup>v</sup>                  | 89.1 (1)  | O1-S-O3                                   | 108.9 (2) |
| O3 <sup>iii</sup> -Mn1-O3 <sup>iv</sup> | 86.8 (1)  | O1-S-O4                                   | 110.7 (2) |
| O2-Mn2-O2 <sup>vi</sup>                 | 94.6 (1)  | O2-S-O3                                   | 110.6 (2) |
| O2-Mn2-O2 <sup>v</sup>                  | 94.6 (1)  | O2-S-O4                                   | 107.9 (2) |
| $O2-Mn2-O4^{vii}$                       | 90.9 (1)  | O3-S-O4                                   | 108.4 (2) |

### Table 2

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|---------------------------------|----------|-------------------------|--------------|--------------------------------------|
| N1-H11···O1 <sup>v</sup>        | 0.85(1)  | 2.55 (3)                | 2.933 (4)    | 108 (3)                              |
| $N1-H11\cdots O3^{iii}$         | 0.85 (1) | 2.62 (8)                | 3.075 (3)    | 115 (6)                              |
| $N1-H11\cdots O4^{iii}$         | 0.85(1)  | 2.42 (2)                | 3.178 (5)    | 149 (4)                              |
| $N1 - H12 \cdot \cdot \cdot O1$ | 0.85(1)  | 2.58 (1)                | 2.933 (4)    | 106(1)                               |
| $N2-H21\cdots O2$               | 0.85(1)  | 2.12 (1)                | 2.946 (4)    | 163 (3)                              |
| $N2-H22\cdots O3^{x}$           | 0.85 (1) | 2.46 (1)                | 3.127 (6)    | 136 (2)                              |

Symmetry codes: (iii) -x + 2,  $y + \frac{1}{2}$ ,  $-z + \frac{3}{2}$ ; (v)  $y + \frac{1}{2}$ ,  $-z + \frac{3}{2}$ , -x + 2; (x) y, z, x.



Figure 1

*ORTEPII* (Johnson, 1976) plot of a part of the structure of  $(NH_4)_2Mn_2(SO_4)_3$ , with displacement ellipsoids at the 50% probability level. H atoms are drawn as spheres of arbitrary radii. [Symmetry codes: (i) *z*, *x*, *y*; (ii) *y*, *z*, *x*; (iii) 2 - x,  $\frac{1}{2} + y$ ,  $\frac{3}{2} - z$ ; (iv)  $\frac{3}{2} - z$ , 2 - x,  $\frac{1}{2} + y$ ; (v)  $\frac{1}{2} + y$ ,  $\frac{3}{2} - z$ ; (vii)  $\frac{3}{2} - z$ , 1 - y,  $\frac{1}{2} + y$ ; (vi)  $\frac{3}{2} - z$ , 1 - x,  $\frac{1}{2} + y$ ; (ix)  $\frac{3}{2} - y$ , 1 - z,  $\frac{1}{2} + x$ .]

H atoms were found in difference Fourier maps and were refined with distance restraints of N-H = 0.85 (1) Å and H···H = 1.39 (1) Å. The  $U_{\rm iso}(H)$  values were set to  $1.2U_{\rm eq}$  of the parent atoms.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

We thank the National Natural Science Foundation of China, Shanxi Normal University and the University of Malaya for supporting this study.

## References

- Behera, J. N., Paul, G., Choudhury, A. & Rao, C. N. R. (2004). *Chem. Commun.* pp. 456–457.
- Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Caminiti, R., Marongiu, G. & Paschina, G. (1982). Z. Naturforsch. Teil A, 37, 581–586.
- Chaabouni, S., Kamoun, S., Daoud, A. & Jouini, T. (1996). Acta Cryst. C52, 505–506.
- Chang, F. M., Jansen, M. & Schmitz, D. (1983). Acta Cryst. C39, 1497-1498.
- Cord, P. P., Courtine, P. & Pannetier, G. (1971). Bull. Soc. Chim. Fr. pp. 2461–2465.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Gattow, G. & Zemann, J. (1957). Z. Anorg. Allg. Chem. 293, 233-240.
- Gossner, B. & Koch, I. (1931). Z. Kristallogr. 80, 455-464.
- Held, P. & Bohatý, L. (2002). Acta Cryst. E58, i121-i123.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kohler, K. & Franke, W. (1964). Acta Cryst. 17, 1088-1089.
- Le Fur, Y., Coing-Boyat, J. & Bassi, G. (1966). C. R. Hebd. Sci. Ser. C, 262, 632-635.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Stiewe, A., Kemnitz, E. & Troyanov, S. (1998). Z. Kristallogr. 213, 654-658.

Wildner, M. & Giester, G. (1991). Neues Jahrb. Mineral. pp. 296-306.

Wojtczak, A. & Jaskólski, M. (1989). Acta Cryst. C45, 30–33. Zemann, A. & Zemann, J. (1957). Acta Cryst. 10, 409–413.

Acta Cryst. (2005). E61, i82-i83